
Arraysimc Manual

Concurrent Dynamics International

October 2014

copyright 2014 Concurrent Dynamics
International

10/25/2014

Objectives

• Part I:

– Build a model file (Arraysimc.txt) to simulate a satellite with 3 reaction
wheels, 2 arrays(ea. 5 parts) and 6 jets

– Panels of each array are deployed from a stowed condition in a
coordinated manner

– Show use of ‘jnt’ command to implement simple joint position or rate
command

• Part II:

– Build control.dll to interact with the main program xsv01.exe during
run time to simulate the dynamics and control of the Arraysimc vehicle
with a coordinated array deployment at start

– Xsv01.exe Examples:

• use reaction wheels to maintain LVLH attitude with jets idled

• use reaction jets and wheels to maintain LVLH attitude

 copyright 2014 Concurrent Dynamics
International

10/25/2014

Part I Topics

• Physical Model

• Buildx Tasks

• Key Files

• Main Menu

• Model Menus

• Body Menu

• All b1 Data

• Body Actuation Signals

• Wheel Menu

• Force Menu

• Dynamics Input

• Dynamics Output

• Plot Data

• Gravity/Orbit Menu

• Lock & Gear Constraints

• JNT Menu

• Save Model Data

• Simplot

• Exit Buildx

• Q & A

copyright 2014 Concurrent Dynamics

International
10/25/2014

License Restrictions

10/25/2014
copyright 2014 Concurrent Dynamics

International

License type Buildx.exe Xsv01.dll

Enterprise none none

Project Must stay with the
object count specified
by license
gflag <=12

Runs with model_files
with license specified
object count
gflag <=12

• Project license permits satellite simulations of satellites with a specified
 object count in {bodies, wheels, forces} and in a unique configuration. No
 restrictions are placed on the mass property of bodies and wheels, and
 force placement and parameters or initial conditions.
• Project license permits gravity model with gflag <=12 (see page 36)

How to Use This Manual

• This Arraysimc manual is for Enterprise license users where no restrictions
are placed on the object counts {body, wheels, forces} in creating models.

• Arraysimc.txt is a seed model_file for Enterprise license users to create
other models such as arrayed satellites with one array, or arrayed satellite
with additional appendages.

• CDI has many seed models to expedite the development of more complex
spacecrafts, i.e. those that use CMG’s for ACS, tethered satellite

• This manual is applicable to Project license users whose model object
count is {11, 4, 8} as Arraysimc.

10/25/2014
copyright 2014 Concurrent Dynamics

International

ArraySimc Model

z1 y1

x1

b1=bus,
b2: b6 = array1
b7:b11= array2

reaction wheels axes on b1 :
w1=[1 -1 1] /sqrt(3)
w2=[1 1 1] /sqrt(3)
w3=[-1 1 1] /sqrt(3)
w4=[-1 -1 1] /sqrt(3)

copyright 2014 Concurrent Dynamics
International

10/25/2014

z7 y7

x7

z2 y2

x2

b1

b2:b6

b7:b11

Jet Locations on b1

z1 y1

x1

copyright 2014 Concurrent Dynamics
International

10/25/2014

b1 fpos:
f1 :[-3 -3 0]
f2 :[-3 3 0]
f3 :[-3 0 3]
f4 :[-3 0 -3]
f5 :[0 3 3]
f6 :[0 3 -3]

fvec:
f1 :[.2 0 0]
f2 :[.2 0 0]
f3 :[.2 0 0]
f4 :[.2 0 0]
f5 :[0 -.2 0]
f6 :[0 -.2 0]

f1

f2

f4
f3

f5

f3

f5

z1

y1

x1

f6

b1

Array 1

z1 y1

x1

copyright 2014 Concurrent Dynamics
International

10/25/2014

b1=bus

dvec:
b2:[0 3 0]
b3:[0 3 0]
b4:[0 3 0]
b5:[0 3 0]
b6:[0 3 0]

svec:
b2 :[0 1.5 0]
b3 :[0 1.5 0]
b4:[0 1.5 0]
b5 :[0 1.5 0]
b6 :[0 1.5 0] b2=drive & yoke

b3=panel

b4=panel

b5=panel

b6=panel

Array 2

z1 y1

x1

copyright 2014 Concurrent Dynamics
International

10/25/2014

b1=bus

dvec:
b7: [0 -3 0]
b8: [0 -3 0]
b9: [0 -3 0]
b10:[0 -3 0]
b11:[0 -3 0]

svec:
b7 : [0 -1.5 0]
b8 : [0 -1.5 0]
b9: [0 -1.5 0]
b10:[0 -1.5 0]
b11:[0 -1.5 0] b7=drive & yoke

b11=panel

b10=panel

b9=panel

b8=panel

On the Simulation

• We are building a model file in Part I to support a simulation of an arrayed
vehicle in an orbital environment. The array panels are to deploy in a
coordinated manner. The vehicle attitude shall be controlled to follow
LVLH frame. The model file defines the mass property of bodies and
wheels, specifies forces parameters and constraints, defines gravity model
and the dynamics input/output signals required by the control system.

• Part II presents the procedure to generate the control.dll for the
simulation. Examples are then presented to run xsv01.exe with it to
simulate the control/dynamics as specified by Arraysimc.txt

10/25/2014
copyright 2014 Concurrent Dynamics

International

Buildx Tasks

• Create Arraysimc.txt to represent Arraysimc

• Set up Arraysimc.txt to control array drive joints in position or in rate

• Define gear constraints to have a coordinated array deployment

• Define lock constraints for end of deployment

• Define simplot1.m

copyright 2014 Concurrent Dynamics
International

10/25/2014

Key Files

• Buildx.bat=‘..\Buildx\’

• Input file router: siminput.txt

• Working files: sim1files.txt

• Model_file: Arraysimc.txt

• Simplot file: simplot1.txt

• License: simlicense.txt

copyright 2014 Concurrent Dynamics
International

10/25/2014

Start Buildx.exe

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Click c:\Arraysimc\Buildx.bat to start Buildx.exe and see the Main Menu

Start Buildx.exe

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See all files defined in simInputFile
• Type ‘xsv’ to go to Model Menus

Arraysimc Model Items

copyright 2014 Concurrent Dynamics
International

10/25/2014

Defined
Items

Menu Parameters/data

11 body Body Mass, inr, svec,dvec, dcm0, axis,ang,wrel,jnt, parent,type

4 wheels Wheel Winr, axis, wspd, parent, type

8 forces Force Fvec,fpos, parent,type

8 constraints CN 2 lock, 6 gear constraints

Plant input Input Xv01.dll input data list

Plant output Output Xsv01.dll output data list

Plot data Plot Xsv01.dll plot data list

Orbit Gravity Vehicle’s orbit position and velocity

• Attributes of the defined items can be seen by going to the Menus specified above. Use
the Model Menu commands to do that.

• Part I gives the instructions on how to define the above parameters and data
• If already familiar with Part I, go to Part II on page 61

Model Menus

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See model parts size and go to menus to edit/browse

• Arraysimc has 11 regular bodies, 4 wheels and 8 jets

Body Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See body summary, type ‘body’ from Model Menus
• Arraysimc has 11 bodies

• Joint angles (3:11) above put the arrays in stowed configuration
• Joint angles (3:11)= 0 is the deployed configuration

• Type ‘add<j>’ to add bodies to bj : i.e. ‘add1’ to add bodies to b1

• Type ‘rem<j>’ to remove bj from list

• Type ‘name<j>’ to edit bj .name

• Type ‘par<j>’ to edit bj .parent

• Type ‘type<j>’ to edit motion type, bj .type: {a…h}

• Type ‘axis<j>’ to edit bj .axis: {x, y or z}

• Type ‘ang<j>’ to edit initial inboard bj .ang for 1 dof rotational joints

• Type ‘wrel<j>’ to edit bj .angular_rate

• Type ‘mass<j>’ to edit bj.mass

• Type ‘svec<j>’ to edit bj .svec

• Type ‘dvec<j>’ to edit bj .dvec

• Type ‘inr<j>’ to edit bj .inr

• Type ‘edit<j>’ to see all data on bj

• Type ‘help’ to get definition on data and commands

• Type ‘x’ to exit menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Inertia Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need define moi of each body bj about the bj.cm
• Type ‘inr’ from body menu to see a summary of moi data

• Type ‘inr<j>’ to edit bj.inr
• Type ‘x’ to exit menu

Dvec Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need define dvec(j), bj.hinge.position in bj.parent frame, for each j
• Type ‘dvec’ from body menu and see a dvec summary

• Note: by design b1.dvec=0
• Type ‘dvec<j>’ to edit bj.dvec
• Type ‘x’ to exit menu

Svec Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need define svec(j), bj.position.cm in bj.local frame, for each j
• Type ‘svec’ from body menu and see an svec summary

• Note: b1.cm here is collocated with b1.hinge point, but can be
 nonzero
• Type ‘svec<j>’ to edit bj.svec
• Type ‘x’ to exit menu

Pos Summary

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See where bj.cm is in b1 frame for all j
• Type ‘rpos’ in body menu to see a summary of bj.cm

• Note: b1.cm here is collocated with b1.hinge point but need not be so

3 Ways to Edit Body Data

• Direct edit: type the following commands for immediate edit

– name<j>, type<j> axis<j>, ang<j>, mass<j>

– units<j>

– i.e. ‘name1’ to change b1 name

• Parameter menu edit: Type any of the following parameters and go
to named menu and then edit

– {dvec, svec, inr, wrel, dpos, dvel, … }

• Selected body edit: Type ‘edit<j>’ to edit all parameters of bj

copyright 2014 Concurrent Dynamics
International

10/25/2014

All b1 Data

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See all data on b1, type ‘edit1’ from body menu

Bj Page Info

• 1st block: all attributes of bj, {idx, … torque on b}

• 2nd block: commands to change attributes in block1 or to go to
another body menu: {idx, axis,… x}

– idx<j>: goes to another bj page

– dcm0: edit relative dcm of bj

 for j=1, this is the b1 attitude wrt LVLH frame

– svec: edit the bj cm position in bj coord, etc…

– help: see data and command definitions

– x: exit this page

copyright 2014 Concurrent Dynamics
International

10/25/2014

Body Actuation Signals

• Bj Inboard force or torque actuates that body and impacts the motion of the
rest of the system. Accelerations can be specified for joints with prescribed
motion

• The Dynamics Input signals for bj are processed based on bj.type as follows.

10/25/2014
copyright 2014 Concurrent Dynamics

International

type Size Input processing

A 1 Htqax,j bj.torque(axis)=Htqaxj

B 3 Htq,j bj.torque=Htqj

C 1 Wraccax,j bj.wracc(axis)=Wraccaxj

D 3 Wracc,j bj.wracc=wraccj

E 1 Frcax,j bj.force(axis)=frcaxj

F 3 Frc,j bj.force=frcj

G 1 Hraccax,j bj.hraccax=hraccaxj

H 3 Hracc,j bj.hracc=hraccj

Wheel Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See wheel summary, type ‘whl’ from Model Menus
• ArraySim has 4 wheels all mounted on b1 (see pa=1)

10/25/2014
copyright 2014 Concurrent Dynamics

International

• whlj.parent= 1, for all j, means all wheels are on b1

• whlj.type=A means whlj.input is scalar wheel torque
• whlj.axis= [x y z] , whlj spin axis in parent frame
• whlj.speed= initial whlj speed
• whlj.inr=whlj spin axis inertia

• Type ‘add<j>’ to add wheels to bj
• Type ‘rem<j>’ to remove whlj
• Type ‘name<j>’ to edit whlj.name
• Type ‘type<j>’ to edit whlj.type={A or C}
• Type ‘axis<j>’ to edit whlj.axis
• Type ‘wspd<j>’ to edit whlj.wspd

• Type ‘help’ to get definitions of data and commands
• Type ‘x’ to exit menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Wheel Control Signals

whlj.type Input signal size Sim action

A whltqj 1 whlj.tq= whltqj

C whlaccj 1 whlj.acc= whlaccj

• Dynamics Input signals for wheel(j): whltqj, whlaccj
• Run time input processing of wheel control signals:

Force Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See force summary, type ‘force’ from Model Menus
• ArraySim has 8 jet forces
• fj.parent=1 for all j, means they all impinge b1

• fj.type=1 for all j means that the xsv01.dll input for them are 1/0 signals

• Note: f7,f8 are not given force values because they are not needed by
 ACS_jet.m of ArraySimc

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Type ‘pos’ to see the position of defined forces in b1 coord as next

• Type ‘rxf’ to see the torque of defined forces in b1 coord

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Data:
• fj.parent= 1, for all j, means all jets are on b1 (bus)
• fj.type=1 means fj.input is an on/off signal
• fj.fvec= [x y z] ,directional vector of fj

• fj.fmag= magnitude of fj when activated
• fj.fpos=[x y z], impact position of fj in parent frame

• Commands:
• Type 'add<j>’ to add external forces to bj
• Type 'rem<j>’ to remove fj
• Type 'name<j>’ to edit fj.name
• Type 'type<j>’ to edit fj.type={1,2 or 3}
• Type 'fvec<j>’ to edit fj.fvec
• Type 'fpos<j>’ to edit fj.fpos

Force Menu Data & Commands

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Type 'par<j>’ to edit fj.parent
• Type 'pos’ to show all force impact positions in b1 frame
• Type 'rxf’ to show torque of all forces about f_ref in b1 frame
• Type 'help’ to get definitions of data and commands
• Type 'x’ to exit menu

• Dynamics Input signal for fj is xfj:
• Run time input processing of xfj:

fj.type xfj size Sim action

1 1=on, 0=off 1 fj.force= set value or zero

2 Scalar magnitude
of fj

1 fj.force= xfj*fj.unitv

3 3 x 1 force vector
in b1 frame

3 fj.force= xfj

Gravity/Orbit Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need to specify the vehicle orbit

• Type ‘grav’ from Model Menus to enter Gravity Menu

• ArraySim orbit :

– 65 deg inclined circular orbit

– True anomaly= 0 deg

– orbit period is 200 minutes

– gflag= 10, meaning spherical earth gravity model

– epoch: 12.23.2009 (see sunpos menu) relates to LST

copyright 2014 Concurrent Dynamics
International

10/25/2014

Gravity Menu

Gravity Model Selections

• Gravity flag: gflag

– 0 g is fixed as given by [gx gy gz] (flat earth)

– 10 g at bj.cm is defined by syspos (spherical earth)

– 11 g at bj.cm is defined by bj.pos.eci

– 12 same as #11 plus gravity gradient torque on bj

– 20 g at bj.cm with J2 is defined by syspos (oblate earth)

– 21 g at bj.cm with J2 is defined by bj.pos.eci

– 22 same as #21 plus gravity gradient torque on bj

– 30 g at bj.cm with J2, J3 and J4 is defined by syspos (oblate earth)

– 31 g at bj.cm with J2, J3 and J4 is defined by bj.pos.eci

– 32 same as #31 plus gravity gradient torque on bj

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Type ‘spos’ to edit orbit position in eci coordinates

• Type ‘svel’ to edit total velocity in eci coordinates

• Type ‘grav’ to edit gravitational acceleration, [gx, gy, gz]

• Type ‘semi’ to edit semimajor axis

• Type ‘ecc’ to edit eccentricity, … and so forth

• Type ‘perm’ to edit orbit period in minutes

• Type ‘sflag’ to run simulation in prescribed(spos,svel) mode or in

 force determined(spos,svel) mode

• Type ‘gflag’ to select the gravity model for the simulation

• Type ‘help’ to get definitions of data and commands

• Type ‘x’ to exit menu

• Buildx automatically updates all orbit parameters when one of them is
altered, i.e. changing ‘perm’ results in a new (spos, svel, ephemeris)
…etc.

10/25/2014
copyright 2014 Concurrent Dynamics

International

Constraint Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• See constraint summary, type ‘cn’ from Model Menus or Body Menu

• ArraySim needs the following:
a. Lock constraints for b3 and b8 for end of array deployment
b. Gear constraints for b4:b6 to constrain angular motion between joint

pairs (3,4),(4,5),(5,6)
c. Gear constraints for b8:b11 to constrain angular motion between joint

pairs (8,9),(9,10),(10,11)

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Cn Data:
• cn(j).name= constraint name
• cn(j).ic= 1 means enable cnj at t=0, 0 means otherwise
• cn(j).ln=number of cn equations for cn(j)
• cn(j).(b1, b2)= two bodies involved in cn(j)
• cn(j).(f1, f2)= two forces involved in cn(j)
• cn(j).(d1, d2,d3)= unit vectors involved in cn(j)
• cn(j).(p1, p2)= position markers involved in cn(j)

• Cn Commnads:
• Type ‘add’ to add a constraint
• Type ‘rem<j>’ to remove cnj(j)
• Type ‘edit<j>’ to edit cn(j)
• Type ‘body<j>’ to edit cn(j).(b1,b2)
• Type ‘pmkr<j>’ to edit cn(j).(p1,p2)
• Type ‘frc<j>’ to edit cn(j).(f1,f2)

• Type ‘dmkr<j>’ to edit cn(j).(d1,d2,d3)

• Type ‘ic<j>’ to toggle cn(j).ic between 0 and 1

• Type ‘help’ to get definitions of data and commands

• Type ‘x’ to exit menu

• Dynamics Input signal for cn(j)= cnj

• Input processing of cnj:

10/25/2014
copyright 2014 Concurrent Dynamics

International

Cnj size Sim action

1 1 Enables the constraint represented by cn(j)

0 1 Disable cn(j)

10/25/2014
copyright 2014 Concurrent Dynamics

International

• See constraint selection menu, type ‘add’ from Constraint Menu

• Type ‘bb’ to select body-to-body gear constraint
• Type ‘ww’ to select wheel-to-wheel gear constraint
• ans so forth
• Type ‘lk’ to select a hinge lock constraint
• Type ‘x’ to exit this menu

Lock Constraint

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Constraint(j) is controlled by the dynamics input signal cnj
• Constraint(j) is enabled when cnj=1
• If cnj.type=Lock & cnj=1, then cnj.body.joint is locked
• In this case, cnj.body=3 and 8
•
• To define cnj.lock for b3 and b8:

1. Type ‘add’ from Constraint Menu
2. Select ‘LK’ for constraint
3. complete ‘LK’ dialog by replying 3 to obtain a lock constraint on
 body 3
4. repeat 1-3 for body 8

Gear Constraint

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Constraint(j) is controlled by the dynamics input signal cnj
• Constraint(j) is enabled when cnj=1
• If cnj.type=BB & cnj=1, then cnj.body1.angle and cnj.body2.angle are
 constrained to satisfy
• k1*body1.angle+ k2*body2.angle= 0

• To define cnj.type=BB for b3 and b4:

1. Type ‘add’ from Constraint Menu
2. Select ‘BB’ for constraint
3. Complete ‘BB’ dialog by replying 3 and 4 for body1 and body2
4. Reply with 2 and 1 for k1 and k2, since ang3 need to travel from
 90 to 0 while ang4 needs to move from -180 to 0

• Repeat steps 1-4 for other pairs listed on page 38 with k1,k2=[1, 1]
• Type gains to see all k1, k2

10/25/2014
copyright 2014 Concurrent Dynamics

International

• See constraint control gains, type ‘gains’

JNT Menu

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Sim Engine can generate hinge torque for simple joint position or rate
 control for specified joints
• Implements the following bj.torque:

htqaxj= kp*(cmd_ang – angj)+kv*(cmd_rate – wrelaxj)+ preload

• See joint control or JNT summary, type ‘jnt’ from Model Menus or Body Menu

• Arraysimc needs JNT for the following tasks:
1. Position or rate control for array drives: b2, b7

2. Highly damped pushoff force on b3 and b8 to deploy arrays

10/25/2014
copyright 2014 Concurrent Dynamics

International

• bj.jnt.mode = (a,b,c)
 a=1 means position control, a=2 means rate control
 b=0 ignore for now
 c=0 ignore for now

• bj.jnt.(kp, kv) = joint torque position and rate control constants
• bj.jnt.(preload)= joint torque preload
• bj.jnt.j_coul = joint Coulomb force/torque

• Type ‘modej’ to edit bj.jnt.mode
• Type ‘pgainj’ to edit bj.jnt.kp, and so forth
• Type ‘show’ to see commands and j_coul summary

JNT Position/Rate Control

10/25/2014
copyright 2014 Concurrent Dynamics

International

• For Position control
• set bj.jnt.mode=[1 0 0]
• set bj.jnt.ang= cmd angle
• set bj.jnt.preload= 0
• set bj.jnt.pgain= kp (provided by analysis)
• set bj.jnt.vgain= kv (provided by analysis)

• For Rate Control
• set bj.jnt.mode=[2 0 0]
• set bj.jnt.ang= cmd rate
• set bj.jnt.preload= 0
• set bj.jnt.pgain= 0
• set bj.jnt.vgain= kv (provided by analysis)

Highly Damped Torque

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Have a highly damped torque at bj.hinge to initiate array deployement
 with the following hinge torque for j=3 and 8:
 bj.htqax= preload -kv*bj.rate

• for b3.joint:
• set b3.jnt.mode=[1 0 0]
• set b3.jnt.preload= .5
• set b3.jnt.pgain= 0.
• set b3.jnt.vgain= 50

• for b8.joint:
• set b8.jnt.mode=[1 0 0]
• set b8.jnt.preload= -.5
• set b8.jnt.pgain= 0.
• set b8.jnt.vgain= 50

10/25/2014
copyright 2014 Concurrent Dynamics

International

• See ang/rate and j_coul commands summary, type ‘show’

Dynamics Input

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need input data to xsv01.dll to actuate the vehicle dynamics during run time
• Type ‘input’ from Model Menus to open the input menu to select data
• Use ‘newlist’ to get a suggested list for the current model
• Use ‘add’ and ‘rem’ command to modify current input list (udata)
• Arraysimc input list is as follows:

• cn, 1:2 = hinge locking constraint enable signals
• whltq, 1:4= four rwa torque
• xf,1:6 = six jet on/off signals

• Type ‘add’ to add new variables to the end of udata list

• Type ‘add<j>’ to insert new variables at udata(j)

• Type ‘rem’ to remove a group of variables

• Type ‘rem<j>’ to remove udata(j)

• Type ‘chg<j>’ to change udata(j)

• Type ‘len’ to see ordinal position of udata and their length

• Type ‘x’ to exit udata menu

• A variable selection menu appears on commands {add, chg}

• Type ‘sel<j>’ to select var(j) to add or chg

• Type ‘x’ to return to udata menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Dynamics Output

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Need output motion signals from the dynamics engine to drive control
 system during run time
• Type ‘output’ from Model Menus to open the output menu to select
 signals
• Use ‘newlist’ to get a suggested list for the current model
• Use ‘add’ and ‘rem’ command to modify current output list (ydata)
• Arraysimc output list is as follows:

• angle,3 & 8 = array locking joint angles
• w, 1 = bus angular rate in b1 frame
• b2osml, 1 = small angle b1.attitude_err wrt LVLH frame
• whlspd, 1:4 = rwa speed

• Type ‘add’ to add new variables to the end of ydata list

• Type ‘add<j>’ to insert new variables at ydata(j)

• Type ‘rem’ to remove a group of variables

• Type ‘rem<j>’ to remove ydata(j)

• Type ‘chg<j>’ to change ydata(j)

• Type ‘len’ to see ordinal position of udata and their length

• Type ‘x’ to exit ydata menu

• A variable selection menu appears on commands {add, chg}

• Type ‘sel<j>’ to select var(j) to add or chg

• Type ‘x’ to return to ydata menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Plot Data

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Sample selected data from the dynamics engine to plotfile during run time
• Type ‘plot’ from Model Menus to open the Plot Menu to select plot data
• Use ‘newlist’ to get a suggested list for the current model
• Use ‘add’ and ‘rem’ command to modify current plot data list (odata)
• Arraysimc plot list is as follows:

• Plot data groups:
– Bus: quat1, wrel1, syshb1, sunb1, b2o1231

– System: syspos, sysvel, sysacc, syshmom, sunorb,cnrows, eclipse,lst

– Wheels: whlspd1:4, whltq1:4

– Arrays: angle2:11, wrelax2:11, htqax2:11

• Type ‘add’ to add new variables to the end of odata list

• Type ‘add<j>’ to insert new variables at odata(j)

• Type ‘rem’ to remove a group of variables

• Type ‘rem<j>’ to remove odata(j)

• Type ‘chg<j>’ to change odata(j)

• Type ‘len’ to see ordinal position of udata and their length

• Type ‘x’ to exit odata menu

• A variable selection menu appears on commands {add, chg}

• Type ‘sel<j>’ to select var(j) to add or chg

• Type ‘x’ to return to odata menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Simplot

• Need to construct simplot1.m to view sim results in Matlab, then type ‘simplot’
from Model Menus (page 11) or Plot Menu (page 54)

• All plot data were selected in Plot Menu
• A. steps from simPlot Menu:

1. Type 'add’ to add figures and respond with ‘3’ to create 3 figures
2. Type 'title1’ to set figure (1) title: i.e. reply with ‘system’
3. Type 'vars1’ to define variables to be plotted in fig 1. this opens the plot variables page

• B. steps from vars menu:
1. Type 'addv9’ and reply with 5to add 5 variables starting with the variable(9), syshmom
2. Type 'addv2’ and reply with 1 to add ‘wrel1’ to the variable list
3. Type 'addp’ and respond with ‘1,6’ to create six subplots for figure(1)
4. Type 'format’ and respond with ‘3,2’ to plot 6 subplots in 3 rows and 2 columns format
5. Type 'x’ to go back to simPlot Menu

• Repeat steps A.2, A.3 and all B steps with proper indexing to define other figures
for sat3w2a

• Final steps from simPlot Menu:
1. Type 'save’ and reply with ‘simplot1.txt’ to save simplot data to simplot1.txt
2. Type 'make’ to create simplot1.m, see completion message
3. Type 'x’ to exit simPlot Menu. Simplot1.m is ready.

copyright 2014 Concurrent Dynamics
International

10/25/2014

Save Model Data

• Need to save current data to a model file
• Type ‘save’ from Model Menus (page 11) and complete the save dialog

as follows

copyright 2014 Concurrent Dynamics
International

10/25/2014

• On hitting return, current model data would have been saved to
Arraysimc.txt

• Try option 2

Exit Buildx

• 3 ways to exit Buildx:

– go to Model Menus or Main Menu and type ‘q’ <return>

– go to Main Menu and type ‘x’

– Click the ‘x’ on top right corner of the Buildx window

• Note: Buildx.exe does not save model data automatically. see save
procedure on page 57

copyright 2014 Concurrent Dynamics
International

10/25/2014

Q & A

• Can one add and delete bodies, wheels and forces?
– yes if you have enterprise license, and no if you have a project license

• Can jet forces placement and alignment be specified like in real vehicles?
– Yes, one must in every case match the jet controller with the torque characteristics of the jets

• Are all Project licenses strictly for object count {11, 4, 8}?
– no, for example a CMG4sim Project license has an object count of {5, 4, 8} and a unique

parent-child relation between bodies, wheels and forces

• How to setup Arraysimc as a 3 wheel system under a Project license?
– go to xsv.wheel menu and set whl(4).type=3, whl(4).wspd=0

– edit whlj.axis, whlj.inr, whlj.wspd for j=1:3 as necessary

• How to setup satsim with < 8 jets under a Project license?
– as an example, let’s disable jet(7:8):

 go to xsv.forcemenu and set frc(7:8).type=1 and not include these in xsv.input list (udata)

10/25/2014
copyright 2014 Concurrent Dynamics

International

• How can one see all the available input, output and plot variables when
choosing them from udata, ydata and odata menus?
– all available variable list is shown when one types ‘add’ command from the menu

– Type 'defj’ to get the definition of variable(j) in that list

– Type 'selj’ from the add menu to select variable(j) to the list

• How does one change the plot data sample period?
– Type 'plotdt’ from the Main Menu or from the times menu to do that

• Why are there ‘dt’ and other time specification in the times menu?
– those time specifications are not used for the Simulink applications, they are for the Fortran

and C implementation of xsv01 engine

10/25/2014
copyright 2014 Concurrent Dynamics

International

Part II Topics

• Xsv01.exe

• How Control.dll Works

• User_code.c

• Vehdata.h

• Utilc.lib subroutines

• Acsc.lib subroutines

• Control System

• Example1

• Example2

• Adjustable Simulation Parameters

• Exercises

• Simulation Notes

• Summary

copyright 2014 Concurrent Dynamics

International
10/25/2014

XSV01.exe

• Xsv01.exe is the main program that comes with the Arraysimc package. Its
functions are to:

– Read data from model file to initialize the simulation database

– Integrate numerically the motion equations required by the model file
while passing motion signals to and receiving actuation signals from
the control system represented by control.dll.

• Control.dll is the application specific control system that user provides to
cause the vehicle motion respond in a desired manner.

copyright 2014 Concurrent Dynamics
International

10/25/2014

Xsv01.exe Dataflow

10/25/2014
copyright 2014 Concurrent Dynamics

International

xsv01.exe Mode_file

Control.dll

Plot_file

Summary_file

Message_file
Xsv01.exe: simulation main program
Model file: application specific, user defined
Control.dll: application specific, user generated

ydata udata

• Model_file: defines all parameters of the vehicle for the simulation

• Summary_file: records all the model parameters and initial condition of an

 xsv01.exe run

• Plot_file: a file of sampled plot data recorded during a simulation

• Message_file: messages from xsv01.exe during a run

> Part I has already described how to build the model file for Arraysimc.

> Part II begins next

10/25/2014
copyright 2014 Concurrent Dynamics

International

Part II Introduction

• The following charts show how to build a trial control.dll that has the
framework of the control system needed for the application.

• Two parts need to be built: control subroutines and header file
• At a minimum, we would use Buildx.Codegen Menu to construct 5 key control

subroutines and their header files.
• Any discrete/analog process in the control system counts as an additional

control subroutine that Codegen must account for.
• Special control subroutine names cause Codegen to insert practical details into

those routines
• Constants and utility routines inserted by Codegen in the trial control.dll need

be replaced with those based on analysis and application specific algorithms
later.

• A functional control.dll should be obtained after a few iterations of running it
with xsv01.exe and correcting errors.

• From that point on, user can expand the size and details of the control
subroutines to satisfy their simulation needs.

10/25/2014
copyright 2014 Concurrent Dynamics

International

How Control.dll Works

• It calls five subroutines: c_init, c_in, c_discrt, c_analog, c_out

• The purpose and frequency of call to these subroutines are shown on the
following pages.

• The header file used by these subroutines are defined in the vehdata.h

• Files in the package that help in the construction of control.dll are:

10/25/2014
copyright 2014 Concurrent Dynamics

International

Files in the package Description

Control.obj Object code of control.c

Utilc.lib Matrix-vector math utility routines

Utilc.h Utilc subroutine call prototypes

Acs_c.lib Attitude control system subroutines

Acs_c.h Acs_c subroutine call prototypes

Primary Control.dll Subroutines

10/25/2014
copyright 2014 Concurrent Dynamics

International

Control.obj

C_init()

C_in(t,x)

C_discrt(t)

C_analog(t)

C_out(t,y)

initialization

Read input signals

Run discrete processes

Run analog processes

Send actuation signals out

Control.dll

User_code.c

Primary C-Routines

10/25/2014
copyright 2014 Concurrent Dynamics

International

subroutine Call frequency Function

C_init Once at start of
simulation

Initialize control related parameters

C_in* At top of every
derivative calculation

Read the motion signals from the
plant dynamics

C_discrt At top of every
derivative calculation

Execute all discrete events at discrete
times

C_analog At every derivative
calculation

Execute all analog computations for
signal processing and control

C_out* At end of every
derivative calculation

Send actuation signals back to the
plant dynamics

Building Control.dll

• A Short description of how to build control.dll:

1. Go through a ‘Codegen’ procedure given next using Buildx.exe to
generate a user_code.c.tmp and the related header file vehdata.h.tmp.
The former is a template of the five subroutines called by control.dll

2. User would add details to user_code.c.tmp and vehdata.h.tmp as
required by the application.

3. At the end of that process change user_code.c.tmp to user_code.c

4. Likewise, change vehdata.h.tmp to vehdata.h

5. Compile control.dll with the following CL command at DOS prompt

– ‘CL control.obj user_code.c util.lib acsc.lib /LD’

10/25/2014
copyright 2014 Concurrent Dynamics

International

Codegen Procedure

• Purpose: generate user_code.c.tmp, vehdata.h.tmp

• Given: vehicle model file from Part I

 Preprocessing:

1. Go to Buildx >xsv > Model Menus

2. Use ‘discrt’ command to define discrete/analog processes : name and
sample period (as necessary); period=0 => analog process

3. Use ‘ode’ command to define application specific ‘ordinary differential
equations’: name, and state size (as necessary)

4. Use ‘switch’ command to define switches for events: switch name and
simple switch function (as necessary)

5. Type ‘cgen’ to open the Codegen Menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

Arraysimc Discrete Processes

• For Arraysimc, we defined 2 processes: acs_rwa(discrt), acs_jet(discrt)

• This definition is done by using ‘add’, ‘name’ and ’period’ commands

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Need to save the new model data to Arraysimc.txt
• Next, Go to Codegen Menu by typing ‘cgen’ from Model Menus
• Note: acs_rwa and acs_jet are two special discrete process names, because

they cause Codegen to insert functional details in the generated code

ACS_C.lib Subroutines

Subroutine purpose Examples

Get_acscmd Compute ACS command signal
to null attitude error

Arraysimc, arraysimc,
cmg4simc

Get_6jettimes Compute 6 jet on/off times to
null attitude error command

Arraysimc, arraysimc

Get_hmgr6jettimes Compute 6 jet on/off times to
null system angular momentum

cmg4simc

Get_cmgtq Compute CMG input torque to
null attitude error

cmg4simc

10/25/2014
copyright 2014 Concurrent Dynamics

International

• These are subroutines written for the examples, by that they need be replaced
when configuration or mass property change from those given.

Special Names

10/25/2014
copyright 2014 Concurrent Dynamics

International

Process name Purpose Acs_c.lib routines
invoked

acs_rwa Generate RWA torque for
ACS

Get_acscmd

acs_cmg Generate CMG torque for
ACS

Get_acscmd
Get_cmgtq

acs_jet Compute jet on/off times
for ACS

Get_acscmd
Get_6jettimes

hmgr_jet Compute jet on/off times
to null system angular
momentum, syshb1

Get_hmtr6jettimes

• These special subroutine names when given to discrete processes cause functional
codes to be generated for those .c.tmp routines

Codegen Menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Data on this page needs be edited to assist in code generation

• Type ‘sa’ to define number of arrays (max=2) and the driver hinges (bodies)

• Type ‘cmg’ to define number of CMG’s and the rotor platform bodies

• Type 'rwa’ to define number of reaction wheels

• Type ‘jets’ to define number of jets

• Type ‘gyros’ to define number of gyros

• Type ‘dt’ to define the sample period of 4 discrete processes

• Type ‘codegen’ to generate components of user_code.c.tmp and vehdata.h.tmp

• Type ‘gyroc’ to toggle ‘generate gyro code’ flag

• Type ‘rwac’ to toggle ‘generate rwa code’ flag

• Type ‘cmdxc’ to toggle ‘generate cmdx code’ flag

• Type ‘editc’ to view and edit all *.c.tmp codes

• Type ‘edith’ to view and edit all *.h.tmp codes

• Type ‘save’ to save codegen data to ‘codegendata.txt’

• Type ‘read’ to read codegen data from ‘codegendata.txt’

• Type ‘help’ to get definition of menu data and commands

• Type 'x’ to exit menu

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Let’s concentrate on the two discrete processes that was defined for sv1sim1c.txt

• Next, type ‘codegen’ to generate the .c.tmp and .h.tmp files needed to build
user_code.c.tmp and vehdata.h.tmp

10/25/2014
copyright 2014 Concurrent Dynamics

International

• You will be prompted for some gain and timing information in this dialog. Supply as
appropriate.

• End time less than Start time means execute the code for ‘t > Start time’

• Start time= End time= 0 means ignore time window code request

1. One can view and edit each one of the *.c.tmp code using the ‘editj’ command where j is the index
preceeding the displayed code.

2. Type ‘assemble’ to assemble all displayed *.c.tmp subroutines into user_code.c.tmp. The latter becomes
item 8 in the above list.

3. Type ‘edit8’ in this case to view user_code.c.tmp

• Just edit user_code.c.tmp from here (i.e. ‘edit8’) until it is acceptably complete

• Type ‘Accept’ to copy user_code.c.tmp to user_code.c, and exit (see Appendix A)

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Next, type ‘editc’ to view user_code.c.tmp components and to assemble
user_code.c.tmp

10/25/2014
copyright 2014 Concurrent Dynamics

International

• Type ‘edith’ to view the generated vehdata.h.tmp components and to assemble
vehdata.h.tmp

1. One can view and edit each one of the *.h.tmp code using the ‘editj’ command where j is the index
preceeding the displayed code.

2. Type ‘assemble’ to assemble all displayed *.h.tmp subroutines into vehdata.h.tmp. The latter becomes
item 7 in the above list.

3. Type ‘edit7’ in this case to view vehdata.h.tmp

• Just edit vehdata.h.tmp from here on (i.e. ‘edit7’) until it is acceptably complete

• Type ‘Accept’ to copy vehdata.h.tmp to vehdata.h, and exit (see Appendix B)

Compile Control.dll

• After obtaining user_code.c and vehdata.h files, exit buildx.exe

• Type ‘mkcontrolc.bat’ to compile control.dll

• Fix any compilation error that appear in user_code.c or in vehdata.h

• The xsv01.exe simulation is now ready to run

10/25/2014
copyright 2014 Concurrent Dynamics

International

Example1

• This example shows
– Arrays are deployed until all joint angles are 0 , at t={122.6, 163.2} sec
– Array drive are position controlled to b2.ang=10, b7.ang=-10
– the LVLH control with jets followed by rwa given a large initial vehicle angular

momentum

• Buildx procedure:

– go to xsv.body menu and set b1.wrel to [.2, 1.0, -.5]
– Set (b2,b3,b7,b8).jnt.mode=[1 0 0]
– Set (b2,b7).jnt.ang=[10,-10], (b3,b8).jnt.ang=[0, 0]
– Set (b2,b7).(kp, kv)=[32, 6.8], (b3,b8).(kp,kv)=[0, 50]
– Set (b2,b7).preload=0, (b3,b8).preload= 0.5
– Set orbit.(ecc, incl, period)=(0, 10 deg, 100 min)

• C_init:

– set worb= [0, 2*pi/6000 , 0] ; orb period= 100 min

copyright 2014 Concurrent Dynamics
International

10/25/2014

Run XSV01.exe

• Click c:\Arraysimc\xsv01.bat and see a running time display

copyright 2014 Concurrent Dynamics
International

10/25/2014

…

View Sim Results

• Type ‘load z.1’ from Matlab window to read in sim result

• Type ‘simplot1(z)’ to view result

– simplot1.m is a script that was constructed using Buildx.exe

 (see page 56)

copyright 2014 Concurrent Dynamics
International

10/25/2014

Fig.1 System Motion-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

•orbit:
 incl= 10 deg
 circular
 per=100 min
 gravity: gflag=10
 => spherical earth grav

•see syshmom, constant
 for t >1000

•ACS:
 b1.rpy=b2o1231=0
 b1.wrel= orbit rate

• hinge lock constraints on
 at t={122.6, 163.1} sec

Fig.2 Wheels Motion-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

•Wheel speed and wtq
 amplitudes are small due
 to small syshb1

Fig.3 Array1 Motion-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

•array 1control:
•ss drive1 angle(ang2)= 10 deg

•array1 (ang 3:6) satisfy gear
 constraints cn3:5

•array1 (ang 3:6) locks at
 t=165 sec

Fig.4 Array2 Motion-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

•array 2control:
•ss drive2 angle(ang7)= -10 deg

•array2 (ang 8:11) satisfy gear
 constraints cn6:8

•array2 (ang 8:11) locks at
 t=165 sec

Fig.5 Other Signals-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

• other
• cnrows= nof cn’s enabled

• sunb1= sun in b1 coord

• sunorb= sun in LVLH coord

• eclipse= 1 means in earth
 shadow

• lst= local satellite time (rad)

Comment-1

• This example shows that the vehicle inertial angular momentum is
constant and stayed near zero due to the initial ACS_jet LVLH control

• The two arrays were deployed and locked properly as by the ‘lock’ and
‘gear’ constraints

• The array drive were position controlled to 10 deg for b2 and -10 deg for
b7 per jnt settings

• The wheel speed amplitude is low due to the small system angular
momentum brought about by the ACS jet activities early on

• Generally the vehicle response is well behaved as specified

10/25/2014
copyright 2014 Concurrent Dynamics

International

Example2

• This example shows
– Arrays are deployed until all joint angles are 0
– Array drive are rate controlled to b2.ang= 0.1 d/s, b7.ang=-0.1 d/s
– the LVLH control with jets followed by rwa given a large initial vehicle angular

momentum

• Buildx procedure:

– go to xsv.body menu and set b1.wrel to [.2, 1.0, -.5]
– Set (b2,,b7).jnt.mode=[2 0 0], (b3,,b8).jnt.mode=[1 0 0]
– Set (b2,b7).jnt.ang=[0.1,-0.1], (b3,b8).jnt.ang=[0, 0]
– Set (b2,b7).(kp, kv)=[0, 6.8], (b3,b8).(kp,kv)=[0, 50]
– Set (b2,b7).preload=0, (b3,b8).preload= 0.5
– Set orbit.(ecc, incl, period)= (0, 10 deg, 100 min)

• Arraysimc_ic.m:

– set worb= [0, 2*pi/6000 , 0] ; per=100 min

copyright 2014 Concurrent Dynamics
International

10/25/2014

Fig.6 System Motion-2

copyright 2014 Concurrent Dynamics
International

10/25/2014

•orbit:
 incl= 10 deg
 circular
 per=100 min
 gravity: gflag=10
 => spherical earth grav

•see syshmom, constant
 past t=500

•ACS:
 b1.rpy=b2o1231=0
 b1.wrel= orbit rate

Fig.7 Wheels Motion-2

copyright 2014 Concurrent Dynamics
International

10/25/2014

•Wheel speed and wtq
 amplitudes are small due
 to small syshb1

Fig.8 Array1 Motion-2

copyright 2014 Concurrent Dynamics
International

10/25/2014

•array 1control:
•ss drive1 b2.wrelax= 0.1 d/s

•array1 (ang 3:6) satisfy gear
 constraints cn3:5

•array1 (ang 3:6) locks at
 t=165 sec

Fig.9 Array2 Motion-1

copyright 2014 Concurrent Dynamics
International

10/25/2014

•array 2control:
•ss drive2 b7.wrelax= -0.1 d/s

•array2 (ang 8:11) satisfy gear
 constraints cn6:8

•array2 (ang 8:11) locks at
 t=165 sec

Fig.10 Other Signals-2

copyright 2014 Concurrent Dynamics
International

10/25/2014

• cnrows= nof cn’s enabled

• sunb1= sun in b1 coord

• sunorb= sun in LVLH coord

• eclipse= 1 means in earth
 shadow

• lst= local satellite time (rad)

Comment-2

• This example shows that the vehicle inertial angular momentum is
constant and stayed near zero due to the initial ACS_jet LVLH control

• The two arrays were deployed and locked properly as by the ‘lock’ and
‘gear’ constraints

• The array drive were rate controlled to 0.1 d/s for b2 and -0.1 d/s for b7
per JNT settings

• The wheel speed amplitude is low due to the small system angular
momentum brought about by the ACS jet activities early on

• Generally the vehicle response is nearly identical to that from Example1 as
specified

10/25/2014
copyright 2014 Concurrent Dynamics

International

Adjustable Sim Parameters

copyright 2014 Concurrent Dynamics
International

10/25/2014

• Dt: simulation integration step size
• plotDt: plot data sample period
• printDt: time display sample period
•T: simulation period
• Method: Integration method, RK2 or RK4

• Edit procedure:
1. Go to Main menu
2. Use ‘stepsize’, ‘dtplot’, ‘printdt’, ‘endtime’, ‘method’ commands to change

the sim parameters above
3. Type ‘saveI’ to save changes to siminputfile
4. Reply with ‘sim1files.txt’
5. exit buildx

exercises

copyright 2014 Concurrent Dynamics
International

10/25/2014

actions parameters reference

change mass property mass, inr, svec, dvec pages:17-23

change initial condition ang,wrel,wrelax, dcm0 pages:17,18

change orbit ephemeris, orbit period pages:34-37

add /remove bodies* pages:17-18

add /remove wheels* pages:27-29

add/remove forces* pages:30-33

modify input (udata) pages:50-51

modify output (ydata) pages:52-53

modify plot (odata) pages:54-55

modify simplot1.m page:56

* Not for project licenses

10/25/2014
copyright 2014 Concurrent Dynamics

International

actions changes control system config

design your own rwa
controller

•may need new ydata
•may need less than 4
 wheels

•likely identical to
Arraysimc
•adjust i/o mux/dmux

design your own jet
controller

•may need new ydata
•may need nof jets other
 than 8

•likely identical to
Arraysimc
•adjust i/o mux/dmux

Simulation Notes

10/25/2014
copyright 2014 Concurrent Dynamics

International

Subject Arraysimc comments

gforces comment applies to Arraysimc gravity forces are auto-computed
by sim engine for all bj in system

jet forces force locations and vectors were
selected for Arraysimc to cause
each jet torque to align with a
particular b1.xyz axes to get a
simple jet controller

generally jets are not placed
ideally as in Arraysimc because of
other design considerations. as
such, associated jet controller can
be complex

wheels Arraysimc chose a 4 corner
pyramid configuration

pyramid base to height ratio can
vary and the center axis of
pyramid need not be along any
particular b1.xyz axis

geometry Arraysimc is a gyrostat and b1.cm
is same as system.cm regardless of
how b1.svec is defined

position and orientation of body
parts are defined by their dvec,
svec ,dcm0 and joint coordinates

10/25/2014
copyright 2014 Concurrent Dynamics

International

Subject Arraysimc comments

b1.dcm0 comment applies here also Dcm0 of b1 is the initial LVLH
attitude of the vehicle

mass, inertia comment does not apply to
Arraysimc since it has only one
regular body

mass and inertia can be set to
zero for non-terminal bodies to
represent ideal massless joints

sunb1,nadirb1 sun vector and nadir vector in
b1 frame were not used in
Arraysimc control system

these two ydata are available for
for sun sensor and earth sensor
modeling

b2osml this small angle LVLH attitude
error of b1 computed by the
sim engine is the rpy signal in
the examples meaning
(roll,pitch, yaw) angles.

this ydata signal is available as a
functional convenience to ACS
analysis. A more realistic rpy
signal needs be built from sunb1
and nadirb1

syshb1 this is the system angular
momentum in b1 frame, not
used in Arraysimc

this ydata signal is available as a
functional convenience to
momentum mgmt design

Summary

• Two examples given here show that xsv01.exe can simulate multibodied
system that require constraints for array deployment.

• The value of Arraysimc is that its mass property can be varied to fit the
vehicle of interest . One is not constrained to add bodies to build just
arrays. They could be other appendages. With the Buildx editor, one can
define a variety of Dynamics Input/Output signals to design and test his
application specific control system. More importantly, it can be very
effective in the design of any arrayed vehicle, its operations and control
system.

10/25/2014
copyright 2014 Concurrent Dynamics

International

Appendix A
User_code.c

• // This user_code.c is generated by Buildx.exe

• //

• // These subroutines manage the data in:

• // vehdata.h variables & constants used by

• // control.dll

• // utilc.h have the prototypes of matrix-vector

• // subroutines used in the generated code

• #include <stdio.h>

• #include <math.h>

• #include "vehdata.h"

• #include "utilc.h"

•

• // Control Input Mapping: x->local data

• void c_in(double *x,double *T){

•

• equal(w1, &x[0],3) ;

• equal(b2osml1,&x[3],3) ;

• equal(gyr_ang,&x[6],3) ;

• t= T[0] ;

• }

•

•

10/25/2014
copyright 2014 Concurrent Dynamics

International

• // initialization procedure.....

• void c_init(){

• worb[0]= 0.;

• worb[1]= -.523599E-03; //(rps),temporary

• worb[2]= 0.;

• }

•

• // c_discrt procedure.....

• void c_discrt(double *T){

• int jet; // jet index

•

• discrete(acs_rwa, T, &acs_rwa_t) ;

• discrete(acs_jet, T, &acs_jet_t) ;

• discrete(c_gyro, T, &gyr_t) ;

• for (jet=0; jet < 6; jet++){

• xf[jet]=0;

• if(T[0] > jet_on[jet] & T[0] <= jet_off[jet])

• xf[jet]=1;

• }

• }

10/25/2014
copyright 2014 Concurrent Dynamics

International

• void acs_rwa(double *ts){

• //This procedure is called at time= *ts

• double G[12]={ .433013E+00, .433013E+00,-.433013E+00,-.433013E+00,

• -.433013E+00, .433013E+00, .433013E+00,-.433013E+00,

• .433013E+00, .433013E+00, .433013E+00, .433013E+00};

• double cmd[3];

• double gain[2]={ .100000E+02, .200000E+03}; //temporary

•

• double sc=-1 ;

•

• if(*ts > .200000E+04){

• subv(worb, gyr_rate, tempv);

• get_acscmd(gain, b2osml1, tempv, cmd); //see acsc.h

• mtxmv(G, cmd, wtq, 4, 3);//wtq=G*cmd

•

• mtxsv(&sc, wtq, wtq, 4);//wtq=-wtq

• }

•

• *ts= *ts + acs_rwa_dt ;

• }

•

10/25/2014
copyright 2014 Concurrent Dynamics

International

• void acs_jet(double *ts){

• //This procedure is called at time= *ts

• double cmd[3];

• double gain[2]={10,200}; //temporary

• double hjet= .300000E+01; //jet impulse/sec, temporary

•

• if(*ts <= .200000E+04){

• subv(worb, gyr_rate, tempv);

• get_acscmd(gain, b2osml1, tempv, cmd); //see acsc.h

• get_6jettimes(ts, cmd, hjet, jet_on, jet_off); //*TEMP CODE*

• }

•

• *ts= *ts + acs_jet_dt ;

• }

•

• // c_gyro procedure.....

• void c_gyro(double *ts){

• double tempv[3];

•

• subx(gyr_ang, gyr_ang_prev, tempv, 3) ;

• mtxsv(&gyr_freq, tempv, gyr_rate, 3) ;

• equal(gyr_ang_prev, gyr_ang, 3) ;

• *ts= *ts + gyr_dt ;

• }

10/25/2014
copyright 2014 Concurrent Dynamics

International

• // Control analog procedure...

• void c_analog(double *T){

•

• }

•

•

• // Control Output Mapping: u->dx/dt

• void c_out(double *T,double *u){

•

• equal(&u[0],wtq,4) ;

• equal(&u[4],xf,6) ;

• }

•

•

10/25/2014
copyright 2014 Concurrent Dynamics

International

Appendix B
Vehdata.h

/* control data: Udata */
double whltq1; /* wheel(1) torque*/
double whltq2; /* wheel(2) torque*/
double whltq3; /* wheel(3) torque*/
double whltq4; /* wheel(4) torque*/
double xf1; /* external force on body(1)*/
double xf2; /* external force on body(2)*/
double xf3; /* external force on body(3)*/
double xf4; /* external force on body(4)*/
double xf5; /* external force on body(5)*/
double xf6; /* external force on body(6)*/
double jet_on[100] ; /* jet start time */
double jet_off[100] ; /* jet end time */
double xf[20] ; /* jet [1/0] array */
double worb[3] ; /* orb rate in b1 frame */
double wtq[5] ; /* wheel torque(max 5) */
double cmgtq[5] ; /* cmg.input.tq(max 5) */
double cmg_ang[5] ; /* cmg.input.ang(max 5) */
double cmg_rate[5] ; /* cmg.input.rate(max 5)*/
int current_jet ; /* jet being processed */

10/25/2014
copyright 2014 Concurrent Dynamics

International

• /* control data: Ydata */

• double w1[3]; /* Body(1) ANG RATE IN Body(1) FRAME*/

• double b2osml1[3]; /* Ref body to orbit attitude SMALL(XYZ) angles*/

• double gyr_ang_x[3]; /* GYRO cumulative angles*/

•

• /* Global variables & constants */

• double tempv[3],tempw[3];

• double pi= 3.14159265358979 ;

• double twopi= 6.28318530717959 ;

• double d2r= 0.01745329251994 ;

• double r2d= 57.29577951308232 ;

• double t ;

•

• void turn_jet_off(double *) ;

•

• // c_gyro: output delta angle per gyro per acs_dt

• void c_gyro(double *);

• double gyr_dt = .10000E+00 ;

• double gyr_freq= .10000E+02 ;

• double gyr_ang[3] ;

• double gyr_ang_prev[3] ;

• double gyr_rate[3] ;

• double gyr_t = 0. ;

10/25/2014
copyright 2014 Concurrent Dynamics

International

• void acs_rwa(double *) ;

• double acs_rwa_data[10];

• double acs_rwa_t= .000000E+00;

• double acs_rwa_dt= .100000E+00;

•

• void acs_jet(double *) ;

• double acs_jet_data[10];

• double acs_jet_t= .000000E+00;

• double acs_jet_dt= .100000E+01;

•

10/25/2014
copyright 2014 Concurrent Dynamics

International

Appendix C
Utilc.h

10/25/2014
copyright 2014 Concurrent Dynamics

International

• void addmtv(double *, double *, double *, double *);

• void addmv(double *, double *, double *, double *);

• void addsv (double *, double *, double *, double *);

• void addsx (double *, double *, double *, double *, int);

• void addv(double *, double *, double *);

• void addx(double *, double *, double *, int);

• void cross(double *, double *, double *);

• double cswitch (int, double *, double *, double *);

• void dc2q(double *, double *);

• void dcsmall(double *, double *);

• void discrete(void (*)(double *), double *, double *);

• double dot(double *, double *);

• double dotx(double *, double *, int n);

• void equal(double *, double *, int);

• void mtxsv(double *, double *, double *, int);

• void mtxmtv(double *, double *, double *, int, int);

• void mtxmv(double *, double *, double *, int, int);

• void multmm(double *, double *, double *);

• void multmtv(double *, double *, double *);

• void multmv(double *, double *, double *);

• void multsv(double *, double *, double *);

• void null(double *, int);

• void qdot(double *, double *, double *);

• void qinv(double *, double *);

• void qiqmult(double *, double *, double *);

• void qmult(double *, double *, double *);

• void q2dc(double *, double *);

• void submtv(double *, double *, double *, double *);

• void submv(double *, double *, double *, double *);

• void subv(double *, double *, double *);

• double unitvec(double *, double *);

• void xyzrot (int *, double *, double *, double *);

10/25/2014
copyright 2014 Concurrent Dynamics

International

